Some Results Related to Ordinal Ramsey Theory

Thilo Weinert
University of Vienna

Winterschool in Abstract Analysis, Section Topology \& Set Theory, Thursday, $3^{\text {rd }}$ February 2022

Introduction

Hungarian Notation
Terminology
Classical Results
. in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Introduction
Hungarian Notation
Terminology
Classical Results
... in the Finite
... in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Definition

$\alpha \longrightarrow(\beta, \gamma)^{2}$ means that every graph on a set of size α has an independent set of size β or a complete subgraph of size γ.

introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Notation

For a graph G let

Introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Observation

For triangle-free graphs, $\alpha \geqslant d$.
Corollary
$n(n+1) \longrightarrow(n, 3)^{2}$.
Theorem (Erdős, 1961)
There is a constant $c>0$ such that $\left\lfloor\frac{c n^{2}}{(\ln (n))^{2}}\right\rfloor \nrightarrow(n, 3)^{2}$ for all natural numbers n.

Theorem (Graver \& Yackel, 1968)
There is a constant $c>0$ such that $\left\lfloor\frac{c n^{2} \ln (\ln (n))}{\ln (n)}\right\rfloor \longrightarrow(n, 3)^{2}$ for all natural numbers n.

Introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
. in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Theorem (Ajtai, Komlós \& Szemerédi, 1980)
There is a constant $c>0$ such that $\left\lfloor\frac{c n^{2}}{\ln (n)}\right\rfloor \longrightarrow(n, 3)^{2}$ for all $n \in \omega \backslash 2$.

Theorem (Shearer, 1982)
$\alpha \geqslant \frac{n(d \ln (d)+1-d)}{(d-1)^{2}}$ for triangle-free graphs.
Corollary
An version of the Theorem of Ajtai, Komlós, and Szemerédi with smaller c.

Introduction

Hungarian Notation
Terminology
Classical Results
. in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Theorem (Kim, 1995)

There is a constant $c>0$ such that $\left\lfloor\frac{c n^{2}}{\ln (n)}\right\rfloor \nrightarrow(n, 3)^{2}$ for all $n \in \omega \backslash 2$.

Corollary
There is a constant $c>0$ such that $\left\lfloor\frac{c n^{2}}{\ln (n)}\right\rfloor \nrightarrow\left(I_{n}, L_{3}\right)^{2}$ for all $n \in \omega \backslash 2$.

Notation

$k \longrightarrow\left(I_{m}, L_{n}\right)^{2}$ if and only if every oriented graph on a set of size k has an independent set of size m or a complete cyclefree subgraph of size n.

Theorem (Erdős \& Rado for $\kappa=\omega$, Baumgartner for cardinals $\kappa>\omega$)
$\kappa k \longrightarrow(\kappa m, n)^{2}$ if and only if $k \longrightarrow\left(I_{m}, L_{n}\right)^{2}$ for all infinite cardinals κ.

Theorem (Ramsey's Theorem for two colours)
$\omega \longrightarrow(\omega, \omega)^{n}$ for every natural number n.
Definition
$r\left(I_{k}, L_{m}\right)=n$ means $n \longrightarrow\left(I_{k}, L_{m}\right)^{2}$ but $p \nrightarrow\left(I_{k}, L_{m}\right)^{2}$ for all $p<n$.

Example (Erdős \& Rado, 1956)
$r\left(I_{2}, L_{3}\right)=4$.
Example (Bermond, 1974)
$8 \nrightarrow\left(I_{3}, L_{3}\right)^{2}$.

Introduction
Hungarian Notation
Terminology
Classical Results
in the Finite
. in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Some Results Related to
Ordinal Ramsey

Thilo Weinert
University of Vienna

Introduction

Hungarian Notation
Terminology
Classical Results
. in the Finite
. in the Infinite
Earlier Work
An Improved Upper Bound Examples

Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Example (Larson \& Mitchell, 1997)

$$
13 \nrightarrow\left(I_{4}, L_{3}\right)^{2} .
$$

Theorem (Larson \& Mitchell, 1997)
$n^{2} \longrightarrow\left(I_{n}, L_{3}\right)^{2}$.
Theorem (Ihringer, Rajendraprasad \& W.)
$n^{2}-n+3 \longrightarrow\left(I_{n}, L_{3}\right)^{2}$ for $n \in \omega \backslash 2$.
Example (Rajendraprasad)
$14 \nrightarrow\left(I_{4}, L_{3}\right)^{2}$.
Corollary
$r\left(I_{4}, L_{3}\right)=15$.

introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Ordinal Ramsey Theory

Thilo Weinert University of Vienna

introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite

Earlier Work

An Improved Upper Bound

Examples

Almost Results

Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Introduction

Hungarian Notation
Terminology

Example (Rajendraprasad)

Classical Results

in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound

Examples

Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Some Results Related
Ordinal Ramsey Theory

Thilo Weinert
University of Vienna

introduction

Hungarian Notation
Terminology
Classical Results
. . in the Finite
in the Infinite

Earlier Work

An Improved Upper Bound

Examples

Almost Results

Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

$$
\begin{aligned}
& x \mapsto x+1 \\
& x \mapsto x+4 \\
& x \mapsto x-5 \\
& x \mapsto x+10
\end{aligned}
$$

Theorem (Alon, 1996)

Considering a graph with at least one edge in which the neighbourhood of any vertex is r-colourable, we have

Introduction
Hungarian Notation
Terminology
Classical Results
. in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples

Almost Results
Corollary

$$
\left\lfloor\frac{508 n^{2}}{\operatorname{ld}(n)}\right\rfloor \longrightarrow\left(I_{n}, L_{3}\right)^{2} .
$$

Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Lemma (Alon, 1996)

Let \mathcal{F} be a family of k distinct subsets of an n-element set X. Then the average size of a member of \mathcal{F} is at least $\operatorname{ld}(k)$
$\overline{10 \operatorname{ld}\left(\frac{\operatorname{ld}(k)+n}{\operatorname{ld}(k)}\right)}$.
Lemma (Tentative Improvement, Almost Proven)
Let \mathcal{F} be a family of k distinct subsets of an n-element set X.
Then the average size of a member of \mathcal{F} is at least $\frac{(3-\sqrt{8}) \operatorname{ld}(k)}{\operatorname{ld}\left(\frac{\operatorname{ld}(k)+n}{\operatorname{ld}(k)}\right)}$.
Note that $3-\sqrt{8}>\frac{1}{6}$.

Introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
. in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

The Lemma would yield the following:

Proposition (Almost Proven)

Considering a graph with at least one edge in which the neighbourhood of any vertex is 2 -colourable, we have $\alpha \geqslant \frac{n \operatorname{ld}\left(d^{\max }\right)}{13 d^{\max }}$.

Corollary (Almost Proven)
$\left\lfloor\frac{26 n^{2}}{\operatorname{ld}(n)}\right\rfloor \longrightarrow\left(I_{n}, L_{3}\right)^{2}$ for all natural numbers n.

Introduction
Hungarian Notation
Terminology
Classical Results
. in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples

Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

This all hinges on proving the seemingly true inequality

Introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples

Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions
$H\left(\frac{2-\sqrt{2}) x}{2 \operatorname{ld}\left(1+\frac{1}{x}\right)}\right)$ and x

$$
H\left(\frac{2-\sqrt{2}) x}{2 \operatorname{ld}\left(1+\frac{1}{x}\right)}\right)-x
$$

Introduction
Hungarian Notation
Terminology

Classical Results

in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples

Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

$$
H\left(\frac{2-\sqrt{2}) x}{2 \operatorname{ld}\left(1+\frac{1}{x}\right)}\right) \text { and } x, \text { closer to } 0 .
$$

Introduction
Hungarian Notation
Terminology
Classical Results
in the Finite
. in the Infinite
Earlier Work
An Improved Upper Bound Examples

Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

	3	4	5	6	7	8	9	m
3	6	9	14	18	23	28	36	
4	9	18	25					
5	14	25						
6	18							
7	23							
8	28							
9	36							
n								

Ordinal Ramsey

Thilo Weinert University of Vienna

Introduction
Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results

Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda
Open Questions

Observation

Introduction

Hungarian Notation
Terminology
$r(n+1,3)-r(n, 3) \leqslant n+1$.

Proof.

Fix a vertex v in a graph on $r(n, 3)+n+1$ vertices. Then either v has a neighbourhood of $n+1$ vertices or v is independent from a set of size $r(n, 3)$.

Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples

Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Proposition (Graver \& Yackel, 1968)

Let G be a $(3, y)$-graph on n points with e edges. Let p_{1} and p_{2}
be two points of G a distance of at least 5 apart (i.e., any path joining p_{1} and p_{2} has at least 5 edges). Denote the valence of p_{i} by $v_{i}(i=1,2)$; and let K_{i} represent the v_{i} points which are adjacent to p_{i}. Finally let G^{\prime} be the graph formed by removing from G the points p_{1} and p_{2} and all edges with p_{1} or p_{2} as end-points, and then adding all edges between points in K_{1} and points in K_{2}. Then G^{\prime} is a $(3, y-1)$-graph on $(n-2)$ points with $\left[e+\left(v_{1}-1\right)\left(v_{2}-1\right)-1\right]$ edges

Corollary
$r(n+1,3)-r(n, 3) \geqslant 3$ for all $n \in \omega \backslash 2$.
Introduction
Hungarian Notation
Terminology
Classical Results
. in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results

Conjecture (Erdős \& Sós)
$\liminf _{n \backslash \infty} r(n+1,3)-r(n, 3)=\infty$.
$r\left(I_{m}, L_{n}\right)$.

	2	3	4	5	m
3	4	9	15	23	
4	8	$?$			
5	14				
6	28				
n					

Thilo Weinert University of Vienna

Introduction
Hungarian Notation
Terminology

Classical Results

in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Observation

$r\left(I_{n+1}, L_{3}\right)-r\left(I_{n}, L_{3}\right) \leqslant 2 n+1$.

Proof.

Fix a vertex v in a graph on $r\left(I_{n}, L_{3}\right)+2 n+1$ vertices. Then either v has an in-neighbourhood of $n+1$ vertices or an out-neighbourhood of $n+1$ vertices or v is independent from a set of size $r\left(I_{n}, L_{3}\right)$.

Proposition (W., 2021)

Let e, i, and n be natural numbers. If there is an oriented graph all whose triangles are cyclic and all whose independent sets are smaller than i, with e edges on n vertices one of which is v having degree d, then there is an oriented graph on $n+5$ vertices with $2 d+e+9$ edges all whose triangles are cyclic and all whose independent sets have size at most i.

Introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Corollary

$r\left(I_{n+1}, L_{3}\right) \geqslant r\left(I_{n}, L_{3}\right)+5$ for all $n \in \omega \backslash 2$.

Thilo Weinert
$N^{+}(v)$
University of Vienna

Introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Thilo Weinert
University of Vienna

Introduction

Hungarian Notation
Terminology

Classical Results

in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Some Results Related
to
Ordinal Ramsey
Theory

Thilo Weinert
University of Vienna

Introduction
Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Some Results Related
to
Ordinal Ramsey
Theory

Thilo Weinert
University of Vienna

Introduction
Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
. in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
r
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions
$N^{-}(v)$

Introduction

Hungarian Notation
Terminology

Classical Results

in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost ResultsErdös-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions
$N^{-}(v)$

Introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Almost Results
An
Erdös-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Some Results Related
to
Ordinal Ramsey
Theory

Thilo Weinert
University of Vienna
introduction
Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
r
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Some Results Related
to
Ordinal Ramsey
Theory

Thilo Weinert
University of Vienna

Introduction
Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results

Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions
p

Some Results Related
to
Ordinal Ramsey
Theory
Thilo Weinert
University of Vienna

Introduction
Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite

Earlier Work
An Improved Upper Bound
Examples
Almost Results

Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Some Results Related
to
Ordinal Ramsey
Theory
Thilo Weinert
University of Vienna

Introduction
Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite

Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdös-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Thilo Weinert

Introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Introduction

Hungarian Notation
Terminology

Classical Results

in the Finite
in the Infinite

Earlier Work

An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Introduction

Hungarian Notation
Terminology

Classical Results
 in the Finite
 in the Infinite

Earlier Work

An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

University of Vienna

Introduction

Hungarian Notation
Terminology
Classical Results
\ldots in the Finite
\ldots in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions
p

Some Results Related

Thill Weinert University of Vienna

Introduction

Hungarian Notation
Terminology
Classical Results
\ldots in the Finite
\ldots in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Ordinal Ramsey

Thilo Weinert University of Vienna

Introduction

Hungarian Notation
Terminology

Classical Results
 . in the Finite
 in the Infinite
 Earlier Work
 An Improved Upper Bound Examples
 Almost Results
 An
 Erdős-Sós-Conjecture

A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Ordinal Ramsey

Thilo Weinert University of Vienna

Introduction

Hungarian Notation
Terminology
Classical Results
. in the Finite
. . in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Ordinal Ramsey

Thilo Weinert University of Vienna

Introduction

Hungarian Notation
Terminology

Classical Results
 . in the Finite
 . . in the Infinite

Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Some Results Related to
Ordinal Ramsey

Thilo Weinert University of Vienna

introduction

Hungarian Notation
Terminology
Classical Results
. . in the Finite
. . . in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

Some Results Related to
Ordinal Ramsey

Thilo Weinert University of Vienna

Introduction

Hungarian Notation
Terminology
Classical Results
. . in the Finite
. . . in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Ordinal Ramsey Theory

Thilo Weinert University of Vienna

Introduction

Hungarian Notation
Terminology
Classical Results
. . in the Finite
. . . in the Infinite
Earlier Work
An Improved Upper Bound
Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Ordinal Ramsey Theory

Thilo Weinert University of Vienna

Introduction

Hungarian Notation
Terminology
Classical Results
. . in the Finite
. . . in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Ordinal Ramsey Theory

Thilo Weinert University of Vienna

Introduction

Hungarian Notation
Terminology
Classical Results
. . . in the Finite
. . . in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Question
What is $r\left(I_{3}, L_{4}\right)^{2}$?
We know that $r\left(I_{3}, L_{4}\right) \in 25 \backslash 21=\{21,22,23,24\}$.
For context:
Theorem (Codish, Frank, Itzhakov \& Miller, 2016) $r(3,3,4)=30$.

Question
$\liminf r\left(I_{n+1}, L_{3}\right)-r\left(I_{n}, L_{3}\right)=\infty$? $n \not \subset \infty$

Introduction

Hungarian Notation
Terminology
Classical Results
in the Finite
. in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results
An
Erdős-Sós-Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result
Coda
Open Questions

Miklós Ajtai，János Komlós，and Endre Szemerédi．A note on Ramsey numbers．J．Combin．Theory Ser．A，29（3）：354－360， 1980．ISSN 0097－3165．doi：10．1016／0097－3165（80）90030－8．URL https：／／doi．org／10．1016／0097－3165（80）90030－8．

Noga Alon．Independence numbers of locally sparse graphs and a Ramsey type problem．Random Structures Algorithms， 9 （3）：271－278，1996．ISSN 1042－9832．doi：10．1002／（SICI）1098－2418（199610）9：3＜271：：AID－RSA1＞3．0．CO；2－U．URL http：／／dx．doi．org／10．1002／（SICI）1098－2418（199610）9：3＜271：：AID－RSA1＞3．0．C0；2－U．

James Earl Baumgartner．Improvement of a partition theorem of Erdös and Rado．J．Combinatorial Theory Ser．A，17： 134－137， 1974.

Jean－Claude Bermond．Some Ramsey numbers for directed graphs．Discrete Math．，9：313－321，1974．ISSN 0012－365X．
Fan Rong K Chung Graham and Ronald Lewis Graham．Erdős on graphs．A K Peters Ltd．，Wellesley，MA，1998．ISBN 1－56881－079－2；1－56881－111－X．His legacy of unsolved problems．
Michael Codish，Michael Frank，Avraham Itzhakov，and Alice Miller．Computing the Ramsey number $R(4,3,3)$ using abstraction and symmetry breaking．Constraints，21（3）：375－393，2016．ISSN 1383－7133． doi：10．1007／s10601－016－9240－3．URL https：／／doi．org／10．1007／s10601－016－9240－3．
Paul Erdős．Graph theory and probability．II．Canadian J．Math．，13：346－352，1961．ISSN 0008－414X． doi：10．4153／CJM－1961－029－9．URL https：／／doi．org／10．4153／CJM－1961－029－9．
Paul Erdős．Some new problems and results in graph theory and other branches of combinatorial mathematics．In Combinatorics and graph theory（Calcutta，1980），volume 885 of Lecture Notes in Math．，pages 9－17．Springer， Berlin－New York， 1981.
Paul Erdős and Richard Rado．A partition calculus in set theory．Bull．Amer．Math．Soc．，62：427－489，1956．ISSN 0002－9904．URL http：／／www．ams．org／journals／bull／1956－62－05／S0002－9904－1956－10036－0／S0002－9904－1956－10036－0．pdf．

Paul Erdős and Leo Moser．On the representation of directed graphs as unions of orderings．Magyar Tud．Akad．Mat．Kutató Int．Közl．，9：125－132，1964．URL http：／／www．renyi．hu／～p＿erdos／1964－22．pdf．
Jack Edward Graver and James Yackel．Some graph theoretic results associated with Ramsey＇s theorem．J．Combinatorial Theory，4：125－175， 1968.
Ferdinand Ihringer，Deepak Rajendraprasad，and Thilo Weinert．New bounds on the Ramsey number $r\left(I_{m}, L_{n}\right)$ ．Discrete Math．，344（3）：Paper No．112268，11，2021．ISSN 0012－365X．doi：10．1016／j．disc．2020．112268．URL https：／／doi．org／10．1016／j．disc．2020．112268．
Jeong Han Kim．The Ramsey number $R(3, t)$ has order of magnitude $t^{2} / \log t$ ．Random Structures Algorithms，7（3）： 173－207，1995．ISSN 1042－9832．doi：10．1002／rsa．3240070302．URL https：／／doi．org／10．1002／rsa．3240070302．
Jean Ann Larson and William John Mitchell．On a problem of Erdős and Rado．Ann．Comb．，1（3）：245－252，1997．ISSN 0218－0006．doi：10．1007／BF02558478．URL http：／／dx．doi．org／10．1007／BF02558478．
Stanisław P．Radziszowski．Small Ramsey numbers．Electron．J．Combin．，1：Dynamic Survey 1， 30 pp．（electronic）， 1994. ISSN 1077－8926．URL http：／／www．combinatorics．org／Surveys／index．html．
Kenneth Brooks Reid，Jr．and Ernest Tilden Parker．Disproof of a conjecture of Erdős and Moser on tournaments．J． Combinatorial Theory，9：225－238， 1970.
James Bergheim Shearer．A note on the independence number of triangle－free graphs．Discrete Math．，46（1）：83－87， 1983. ISSN 0012－365X．doi：10．1016／0012－365X（83）90273－X．

Classical Results

in the Finite
in the Infinite
Earlier Work
An Improved Upper Bound Examples
Almost Results

An

Erdös－Sós－Conjecture
A Table
An Upper Bound
A Lower Bound
Another Table
An Analogous Result

Coda

Open Questions

